
Smart contract tooling using
KEVM

1

Andrei Văcaru
Runtime Verification Inc.

Getting up to speed

2

EVM BytecodeApplication Binary
InterfaceSolidity

● Provided a local node with an EVM implementation to act as a sandbox
for developers.

● Unit testing available in both JavaScript and Solidity.

● Widely adopted with active and supportive communities.

Tooling

3

● A Solidity Interface that contains function signatures.

● Do not have an implementation at the Solidity level.

● Give developers the ability to alter the state of the EVM from their own
Solidity tests.

Foundry cheat codes

4

Cheat codes in Solidity

5

Cheat codes in Solidity

6

Cheat codes in KEVM

7

Foundry Fuzz Testing

8

● Foundry would fuzz the values of the function parameters.

Foundry Fuzz Testing

9

Foundry Fuzz Testing

10

KEVM
● Online: https://jellopaper.org

● GitHub: https://github.com/runtimeverification/evm-semantics

● K semantics of the Ethereum Virtual Machine.
○ Passes same conformance test-suite as other clients.
○ Enables symbolic execution (and thus verification) of EVM bytecode.

● Example standalone K proof (transfer function of an ERC20)

● Large-scale proving with K and ACT (from Multi-Collateral Dai system - 1011 proofs)

https://runtimeverification.com/
https://jellopaper.org
https://github.com/runtimeverification/evm-semantics
https://github.com/kframework/evm-semantics/blob/master/tests/specs/erc20/ds/transfer-success-1-spec.k
https://github.com/makerdao/k-dss

ERC20 claim in KEVM

12

ERC20 claim in KEVM

13

ERC20 claim in KEVM

14

 calldata

Infinite gas

ERC20 claim in KEVM

15

ERC20 claim in KEVM

16

ERC20 claim in Solidity

17

ERC20 claim in Solidity

18

balances[addr]

ERC20 claim in Solidity

19

KEVM in your workflow

20

● Symbolic execution, which can be used to do formal verification of your
property tests instead of fuzz testing (Much higher assurance that code
is correct).

● Interactive debugger for stepping through program execution and
visualizing the generated control flow graph.

Benefits of using KEVM

21

KEVM Interactive Debugger

22

KEVM Interactive Debugger

23

KEVM Interactive Debugger

24

● Simplifying nodes

● Removing nodes

● Resuming proofs

● Solidity source map integration

● Improving the output and accessibility

● Support more tool kits

● Integration with other semantics

● Integration with tools such as ERCX

What’s next?

25

● Hatom audit

https://github.com/runtimeverification/publications/blob/main/reports/
smart-contracts/Hatom-audit-report.pdf

● ESDT audit

https://github.com/runtimeverification/publications/blob/main/reports/
consensus-protocols/Elrond-ESDT.pdf

● Proofs for the MultiSig Wallet

https://github.com/runtimeverification/elrond-multisig

What’s next?

26

https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Hatom-audit-report.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Hatom-audit-report.pdf
https://github.com/runtimeverification/publications/blob/main/reports/consensus-protocols/Elrond-ESDT.pdf
https://github.com/runtimeverification/publications/blob/main/reports/consensus-protocols/Elrond-ESDT.pdf
https://github.com/runtimeverification/elrond-multisig

Resources

27

Get started with KEVM
Integration

Join our discord
community

28

Thank you

Questions?

29

