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Getting up to speed
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EVM BytecodeApplication Binary 
InterfaceSolidity



● Provided a local node with an EVM implementation to act as a sandbox 
for developers.

● Unit testing available in both JavaScript and Solidity.

● Widely adopted with active and supportive communities.

Tooling

3



● A Solidity Interface that contains function signatures.

● Do not have an implementation at the Solidity level.

● Give developers the ability to alter the state of the EVM from their own 
Solidity tests.

Foundry cheat codes
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Cheat codes in Solidity

5



Cheat codes in Solidity
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Cheat codes in KEVM
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Foundry Fuzz Testing
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● Foundry would fuzz the values of the function parameters.



Foundry Fuzz Testing
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Foundry Fuzz Testing
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KEVM
● Online: https://jellopaper.org 

● GitHub: https://github.com/runtimeverification/evm-semantics

● K semantics of the Ethereum Virtual Machine.
○ Passes same conformance test-suite as other clients.
○ Enables symbolic execution (and thus verification) of EVM bytecode.

● Example standalone K proof (transfer function of an ERC20)

● Large-scale proving with K and ACT (from Multi-Collateral Dai system - 1011 proofs)

https://runtimeverification.com/
https://jellopaper.org
https://github.com/runtimeverification/evm-semantics
https://github.com/kframework/evm-semantics/blob/master/tests/specs/erc20/ds/transfer-success-1-spec.k
https://github.com/makerdao/k-dss


ERC20 claim in KEVM
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ERC20 claim in KEVM
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ERC20 claim in KEVM
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   calldata

Infinite gas



ERC20 claim in KEVM
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ERC20 claim in KEVM
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ERC20 claim in Solidity
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ERC20 claim in Solidity
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balances[addr]



ERC20 claim in Solidity
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KEVM in your workflow
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● Symbolic execution, which can be used to do formal verification of your 
property tests instead of fuzz testing (Much higher assurance that code 
is correct).

● Interactive debugger for stepping through program execution and 
visualizing the generated control flow graph.

Benefits of using KEVM
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KEVM Interactive Debugger
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KEVM Interactive Debugger
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KEVM Interactive Debugger
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● Simplifying nodes

● Removing nodes

● Resuming proofs

● Solidity source map integration



● Improving the output and accessibility

● Support more tool kits 

● Integration with other semantics

● Integration with tools such as ERCX

What’s next?
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● Hatom audit 

https://github.com/runtimeverification/publications/blob/main/reports/
smart-contracts/Hatom-audit-report.pdf

● ESDT audit

https://github.com/runtimeverification/publications/blob/main/reports/
consensus-protocols/Elrond-ESDT.pdf

● Proofs for the MultiSig Wallet 

https://github.com/runtimeverification/elrond-multisig

What’s next?
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https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Hatom-audit-report.pdf
https://github.com/runtimeverification/publications/blob/main/reports/smart-contracts/Hatom-audit-report.pdf
https://github.com/runtimeverification/publications/blob/main/reports/consensus-protocols/Elrond-ESDT.pdf
https://github.com/runtimeverification/publications/blob/main/reports/consensus-protocols/Elrond-ESDT.pdf
https://github.com/runtimeverification/elrond-multisig


Resources
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Get started with KEVM 
Integration

Join our discord 
community
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Thank you



Questions?
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