
March 2023

Universal Truth Framework

research.runtimeverification.com

Grigore Rosu
Founder & CEO, RV

Professor of Computer Science, UIUC

https://research.runtimeverification.com/PL/
https://research.runtimeverification.com/

Every claim made by framework is verifiably true!
• Claims come with independent, succinct,

3rd party checkable proof certificates

Claim = anything provable or computable:
 program execution, work done or action,
 formal correctness or security of code,
 … mathematical theorem

2

Universal Truth Framework – What?
Claim: 𝝋
Proof: 𝛑𝝋

 𝝋 true
𝛑𝝋

Verifiable computing for all programming languages
• Execute your code securely in untrusted environments (e.g., in the cloud)

zkLANG for any programming language LANG, correct by construction
• zkEVM variants, Cairo (StarkWare), zkVM (RiscZero), zkLLVM (=nil; Foundation)

Formal verification, correctness, security audits, any other program claims, all
become checkable certificates (instead of PDFs)

• You don’t have to trust the developers or the auditors or anybody else

Critical procedures or devices (medical, aviation, automotive, robotics, blockchains)
yield checkable certificates for their correct application

• Increase confidence in complex systems, complex processes, machines, AI 3

Universal Truth Framework – So What?
Many Many Applications … Sky's the Limit

mathematical
proof checker
(240 LOC)

4

Universal Truth Framework – How?
K + SNARKS = Marriage Made in Heaven

Claim:
 𝝋

Mathematical
long proof: 𝚷𝝋

#1. 𝞿1 // axiom
#2. 𝞿2 // axiom

…
#100. 𝞿100 // axiom

…
#247. 𝞿2 → 𝞿248 // …

#248. 𝞿248 // modus ponens…
#99999. 𝞿 //
…

// with #2, #247

crypto
proof:
 𝛑𝝋

Huge!
GBs or TBs

256 bitsSNARK-ed!
Can use other provers
(Coq, Lean, Isabelle,
Agda, Dedukti, etc.) or
even AI (ChatGPT) to
search for proofs

Blockchains currently suffer from some limitations:
• Duplication of computation (all nodes execute same code)
• Hardwired programming or VM language, for all programs
• Security, correctness, formal verification are “external” activities, off-chain

Will enable new generation of blockchains - Blockchain of Truth
• Allow arbitrary claims to be made, stored, checked; e.g. executions, correctness
• Write smart contracts in any programming or specification language
• Execute transaction code once and for all, locally; send SNARK certificate
• Any claim is backed by a mathematical proof, made succinct as a crypto proof

5

Universal Truth Framework – New Blockchain Tech?
Blockchain of Truth!

What is K and Why?

kframework.org

https://kframework.org/

Execution, VMs, Testing

e.g.: fact
orial

(3) =
 6

Optimizers, Bugs, MEV

e.g.: MEV(
txs)

= 17

Formal verifiers

e.g.: 0x2e
…f5

|= E
RC20

State of the Art:
(too) Many Languages, Many Tools

Execution, VMs, Testing

e.g.: fact
orial

(3) =
 6

Optimizers, Bugs, MEV

e.g.: mev(
txs)

= 17

Formal verifiers

e.g.: 0x2e
…f5

|= e
rc20

- Duplication of code and effort
- Wasted talent, error prone, out of sync

Claims: Functional, Safety, Security)
Blockchain tech falls here ^^^

Pain Points:
Duplication, Errors, and Many Claims to Trust!

Execution, VMs, Testing

e.g.: fact
orial

(3) =
 6

Optimizers, Bugs, MEV

e.g.: mev(
txs)

= 17

Formal verifiers

e.g.: 0x2e
…f5

|= e
rc20

Everything in K is a proof, 𝛤Lang ⊢ 𝜑task
Computation is a special case of proof
Small(est) proof checker: 240 LOC

Our Solution: K
Invented in 2003, Improved Ever Since

+ Separation of concerns
+ Intrinsic network effect

𝛤Lang ⊢ 𝜑task

Open source:
kframework.org

K is Large and Complex – Why Trust It?
You Shouldn’t! Check The Proofs It Outputs!
500k+ lines of code, 4 different languages
Likely most complex formal methods system

K tools and dependencies

https://kframework.org/

What’s New in K?

research.runtimeverification.com

https://research.runtimeverification.com/PL/
https://research.runtimeverification.com/

K Summarizer

Input: PL semantics, say KEVM, and code fragment, say SumContract

Output: A CFG comprising all symbolic behaviors of the program.
Semantics driven, correct by construction: each edge is a proved claim.

Not possible 6 months ago! Game changer.

https://jellopaper.org/

13

KFoundry = K[EVM] + Cheat Codes
Foundry is an increasingly popular parametric property testing framework for Solidity

Foundry tools generate random inputs for parameters and run the resulting tests.

KFoundry executes the parametric tests symbolically, using the K EVM semantics.
Parametric tests become formal specifications, and KFoundry formally verifies them!

Familiar UI. K hidden under the hood!

Starting from blank state, execute
setUp, then save that state.
Deploy any contracts needed,
mint balances, etc…

From the state post setUp,
execute each test* method with
random inputs for the arguments.

14

Formal Verification with Parametric Tests
Hoare Triples – foundation of formal verification:

 (forall vars)
 {pre} code {post}

They can be expressed as property tests:

function testProperty(vars) {
 assume pre;
 code;
 assert post;
}

Passing property test symbolically = formal verification of Hoare triple !

Example (Solidity sum of numbers up to N):

(forall N)
 {N > 0} r = sum(N) {r = N*(N+1)/2}

expressible as property test:

function propertySum(int N) {
 assume N > 0;
 int s = sum(N);
 assert s = N*(N+1)/2;
}

Most of formal verification is symbolic property testing!

ercx.runtimeverification.com

15

ERC-X Tool = KFoundry[ERC token specification]

Completely Automatic! Submit your token, too. See how you stack up!

Deep dive investigation of ERC
tokens deployed on mainnet.

https://research.runtimeverification.com/PL/
https://ercx.runtimeverification.com

16

RV-Match = K[C] Funded by:
Used for Verification of Solana Validator

Conventional
compilers do not
detect problem

RV-Match:
• Instance of K concrete execution with C lang
• Automatic debugger for subtle bugs other tools

can't find, with no false positives
• Seamless integration with unit tests, build

infrastructure, and continuous integration
• Platform for analyzing programs, boosting

standards compliance and assurance

Most comprehensive C semantics! ISO compliant.

RV-Match’s kcc tool precisely
detects and reports error, and
points to ISO C11 standard

firedancer snippet

https://runtimeverification.com/match/1.0-SNAPSHOT/docs/benchmark/#running-rv-match-on-the-toyota-itc-benchmark
https://runtimeverification.com/match/1.0-SNAPSHOT/docs/benchmark/#running-rv-match-on-the-toyota-itc-benchmark

Matching Logic
Proof Objects

SNARKed Proof Checker

Smallest logical foundation known for
languages and formal verification!

• Invented in 2019 [published in LICS’19]
• 7 syntactic constructs, 15 proof rules
• Can define any programming language (PL)
• Can express any claim about any program

Everything K, Coq, Lean, etc., do is a
provable matching logic theorem 𝜞 ⊢ 𝝋

• Thus, K, Coq, Lean, …, become powerful
methodologies to build ML proofs [ICFP’20]

• We prefer K: computation = proof, fast (can
be used as PL), many PLs formalized

18

Matching Logic = Foundation for K, Coq, Lean, …

19

240 LOC Proof Checker – Smallest Ever!

Matching logic syntax
and proof system
(240 LOC in total)

Claims with proofs
(machine checked)

We use MetaMath
● metamath.org; 20+ implementations
● Defined entire matching logic
● Encode claims and proof objects
● Reduce claim correctness to

mathematical proof checking:

We re-implemented MetaMath:
● In RiskZero’s Rust fragment
● Then generate recursive STARK
● Collaboration with RiskZero (Tim

Carstens) and Univ. of Illinois
(Andrew Miller + Grigore Rosu)

[published in CAV’21, OOPSLA’23]

https://us.metamath.org/

20

More General, Universal, yet Smaller Circuit
(than Language-Specific Solutions)

Any Claim: 𝝋

crypto proof: 𝛑𝝋

Only Execution Claims: 𝝋

crypto proof: 𝛑𝝋

zkEVM
(complex)

Trust me, zkEVM is a
correct implementation
of some (hypothetical)
EVM formal semantics!

SNARK-ed simple
matching logic proof
checker. Same for all
languages and claims!

EVM

Formal semantics of
EVM, ideally on the
blockchain and vetted
by some organization.

Plutus

Cairo

RISC-V

LLVM

zkEVM vs zk[K[EVM]]

𝚷𝝋
…

…
zkEVM is just one example,
but Cairo, zkVM of RiskZero,
zkLLVM of =nil;, etc., suffer
from the same problem

Plug-and-Play any
language instead of EVM.

30k to
1.5M+ LOC

~240 LOC

Coming Products
(2023-2024)

Pre-deployment recurrent revenue

22

2023 Product: K Prover as a Service (KaaS)

K Tool

(formal verifier,
KFoundry,

ERCX,
RV-Match,

…)

False

True

To be invoked 100’s
or 1000’s of times
per user per project.

Input to
the K Tool

Pre-deployment recurrent revenue

23

2023 Product: K Prover as a Service (KaaS)

K Tool

(formal verifier,
KFoundry,

ERCX,
RV-Match,

…)

Programming
Language

(EVM, WASM,
Solidity, Vyper, …)

Properties to verify

Hints

Code to verify
(EVM, WASM,
Solidity, Plutus,

…)
False

True

To be invoked 100’s
or 1000’s of times
per user per project.

(Different
K tools
may
require
different
inputs)

Example: formal verifier

Major outcome of formal verification audits: specifications / invariants
So we got the most difficult component of runtime monitoring … for free !

Monitoring services alone, without recovery
Inform clients of the health status of their protocol
Inform keepers (arbitrators, liquidators) of opportunities

Monitoring services with recovery
Maintain runtime integrity of protocol
• E.g. invariant “loans are 80% collateralized” does not hold without liquidations
Be keepers ourselves

24

2023 Product: Invariant Monitoring & Recovery
Post-deployment recurrent revenue

25

2024 Product: Proof (of Proof) Certificates

K Tool

(formal verifier,
KFoundry,

ERCX,
RV-Match,

…)

False

True

To be invoked 100’s
or 1000’s of times
per user per project.

Input to
the K Tool

26

K Tool

(formal verifier,
KFoundry,

ERCX,
RV-Match,

…)

False

True

To be invoked 100’s
or 1000’s of times
per user per project.

Input to
the K Tool

Why should I
trust 500k LOC,
or … RV?

?

2024 Product: Proof (of Proof) Certificates

Claim: 𝝋
Proof: 𝛑𝝋

27

K Tool

(formal verifier,
KFoundry,

ERCX,
RV-Match,

…)

False

True

To be invoked 100’s
or 1000’s of times
per user per project.

Input to
the K Tool

 𝝋
𝛑𝝋

2024 Product: Proof (of Proof) Certificates

K Advantage: multi-chain, multi-language audits / tools / proofs

C
C++
Cairo
Haskell
Ligo
Michelson
Plutus
Reach
Rust
Solidity / EVM
Teal
WASM

RV’s core technology platform, dedicated blockchain teams and automated verification tools allow
us to quickly and efficiently add new chain and language support based on market demand. So far:

28

runtimeverification.com

Grigore Rosu
Founder & CEO, RV

Professor of Computer Science, UIUC

grigore.rosu@runtimeverification.com

217-649-8738

Contact

http://www.runtimeverification.com/team
http://runtimeverification.com/

