runtime _
verification

Universal Truth Framework

Grigore Rosu

Founder & CEO, RV

Professor of Computer Science, UIUC

research.runtimeverification.com

March 2023


https://research.runtimeverification.com/PL/
https://research.runtimeverification.com/

Universal Truth Framework — What?

Every claim made by framework is verifiably true! |

« Claims come with independent, succinct,
3" party checkable proof certificates

Claim = anything provable or computable:
program execution, work done or action,
formal correctness or security of code,
... mathematical theorem




Universal Truth Framework — So What?
Many Many Applications ... Sky's the Limit

Verifiable computing for all programming languages
. Execute your code securely in untrusted environments (e.g., in the cloud)

zkLANG for any programming language LANG, correct by construction
. ZKEVM variants, Cairo (StarkWare), zkVM (RiscZero), zkLLVM (=nil; Foundation)

Formal verification, correctness, security audits, any other program claims, all
become checkable certificates (instead of PDFs)

. You don’t have to trust the developers or the auditors or anybody else

Critical procedures or devices (medical, aviation, automotive, robotics, blockchains)
yield checkable certificates for their correct application

. Increase confidence in complex systems, complex processes, machines, Al 3



Universal Truth Framework — How?
K + SNARKS = Marriage Made in Heaven

_ mathematical
(e\ Uathemaltical proof checker

T long proof: 11

* #1. @1 // axiom aypw
¢ I::> I::> #2. 2 // axiom [ prooaf:
#100. 100 // axiom J'l:(p -
% H247. 92 — 248 /] ... Q
#248. 248 [/ modus ponens =

Can use other provers _
(Coq, Lean, Isabelle, // with #2, #247

Agda, Dedukti, etc.) or #99999. ¢ // SNARK-ed! 256 bItS

even Al (ChatGPT) to

search for proofs e
\ J -«
Huge! 4 )
GBs or TBs ‘




Universal Truth Framework — New Blockchain Tech?
Blockchain of Truth!

Blockchains currently suffer from some limitations:

. Duplication of computation (all nodes execute same code)
. Hardwired programming or VM language, for all programs
. Security, correctness, formal verification are “external” activities, off-chain

Will enable new generation of blockchains - Blockchain of Truth

. Allow arbitrary claims to be made, stored, checked; e.g. executions, correctness
. Write smart contracts in any programming or specification language

. Execute transaction code once and for all, locally; send SNARK certificate

. Any claim is backed by a [nathematical prooﬂ, made succinct as a crypto proofj

v




runtime _
verification

What is K and Why?

kframework.org



https://kframework.org/

State of the Art:
(too) Many Languages, Many Tools

C . , Interpreter . \’N\S ?

4
A

- £acC \
Java Compiler e.9- S, NE
W’Of “m'\lers ’ BU\Q — 17
JavaScript /"\/’"\ Model Checker Op A (E*S
TR 5
=1 / (“& 1 : \,e‘-‘\'“efs _ E?*CZO
Solidity / ‘ Symbolic Execution Fo‘.‘-‘\a\ £5 \
> . ox2e-
EthereumVM / \

Deductive Verifier e'g‘



Pain Points:
Duplication, Errors, and Many Claims to Trust!

C £~ , Interpreter CU“O“’\’N\S"L (3) = ©l
e .
| \'/ |5 gactor®? iy |
gave I \ ’ / Compiler e.9- uas: N\E I
N\ - izers, BUST 47
el SRERA opti™ ™" exs) = '
JavaScript N /\“’ Model Checker - eV (

3K 169777 s 0
i | RN : . gerifie™ _ orc2%
Solidity ‘ \ Symbolic Execution Fo‘.‘-"\a\ £5 \ )

| /7> \ . QR2e
EthereumVM p— Deductive Verifier &9_ _____ — /
- Duplication of code and effort Claims: Functional, Safety, Security)

- Wasted talent, error prone, out of sync Blockchain tech falls here AMA



Our Solution: K

Invented in 2003, Improved Ever Since r ro
— = = lLang__ ™task
l ’ yws, T8
o Int t . ’ =
nterpreter E)(ecu“o“’ rial (3)

Java Compiler
JavaScript K Model Checker
Solidity Symbolic Execution

EthereumVM Deductive Verifier

Everything in K is a proof, I',
Computation is a special case of proof
Small(est) proof checker: 240 LOC

: -
+ Separation of concerns ang  Ptask

+ Intrinsic network effect



Kis Large and Complex — Why Trust It?
You Shouldn’t! Check The Proofs It Outputs!

500k+ lines of code, 4 different languages
Likely most complex formal methods system

Open source:
kframework.org

No route to funding

Dependency

Probably could get funding

e EXAMPLE PRODUCT/PROJECT NAME

K tools and dependencies

e LLVM Backend

e Highly oplimized \

e Direct ion of LLVM IR i ing Kore N‘ Concrete Executon
-> Kore transition system for your semantics

e Usable in'main’ mode and in “library’ mode

e Usable in ‘run” mode and in ‘search’ mode

/

‘ kxx summarize

e Bison code generated for your language syntax > Parser

e LR/GLR options available L

e Direct generation of Kore consumable by the
backends

koo run

N~

l kxx monitors

e kore-printbinary

e  Generated code that consumes Kore and
outputs unparsed pretty

e Works by annotating kore definition with
unparser for each production

kxx prove

—

kxx source-to-k

and Reasoning

e  Haskell Backend
o kore-exec, kore-exec —prove, kore-repl,
kore-match-disjunctions, kore-rpc o

e

& ‘Machine-executable malching logic for K*
= RS A z

reachabtllty, some bounded model checkmg,

graph:

KEVMSummarizer

. Extension of semantics, meant to make
everything faster

e Also provides “spec generation” capabilities

(theorem search)

solc-to-k, foundry-to-k, pyteal-to-k

)ses kxx_pyk as library

Defines helpers in K for generating
semantics-specifc helpers

For KEVM, we define helper synlax for using
Solidity-like syntax in the prools we wilte.
Only needed if the language being verified is
actually compiled from some other source
language

Truffle integration for EVM
Foundry integration for EVM
KTEAL testing language
pyteal_eval

kec drop in replacement for gcc

/

Firefly[KEVM], Firefly[IELE], others???
Instrument semantics to record visited program
points as it executes user tests

Display coverage result over bytecode or source
language (eg. Solidity).

Firefly[KEVM], Firefly[IELE], Polkadot
Verification

Execute users test-suite, measure coverage,
make blind ABI-compliant calls into contract and
see il cuverage goes up, 1eporl new lest-mpuls
back to user

We called this “blackbox random testing”, but
several teams call this “fuzzing”

\ Bad Behavior Delection

Foundry Verifier, KMichelson property
testing language, C property tester (NASA)
Extend semantics with helpers that allow
injecting symbolic variables, and making
arbitrary manipulation to the current state (called
“cheat-codes” in Foundry)

Allows users to wiite properties about their
programs directly, and the either fuzz them or
venty them with symbolic execution

O

RV-Match, Firefly[KEVM|IELE]
Walch for specific bad behaviors while
execuling users test-suites

KAlgo Debugger
Symbolic (kore-repl)
Concrete (gdb)

NO EXAMPLES

Syntax highlighting is bare minimum

Would expect things like: “go to cefinition”,
“rename module”, “rename function”, “do a small
refactoring”, etc...

ERC20-Verifier
“Canncd" specifications that check a fixed sct of

properties

Good for “standards compliance” types of tasks
(check/enforce that something is an ERC20,
ERC721, etc. )



https://kframework.org/

runtime _
verification

What’s New in K?

research.runtimeverification.com



https://research.runtimeverification.com/PL/
https://research.runtimeverification.com/

K Summarizer

Input: PL semantics, say KEVM, and code fragment, say SumContract

///Esntract SumContract { “\\\

function sum(int n) external pure returns (int s) {
s =1;
InE 1 = n;
while (i > 1) {
S += 1;
i-=1;

}
I\ /
Output: A CFG comprising all symbolic behaviors of the program.
Semantics driven, correct by construction: each edge is a proved claim.

Not possible 6 months ago! Game changer.

'
| GAS_CELL | V_dfi6edt \ GAS_CELL|> V_defi6edé

290 <o

_:‘I V'_tbd2aT | chop( V_2c2220c3 1t -, ), V_bf2:0a54 >



https://jellopaper.org/

KFoundry = K[EVM] + Cheat Codes

Foundry is an increasingly popular parametric property testing framework for Solidity

ﬂontract ContractTest is Test { \ Starting from blank state, execute h
setUp, then save that state.
SIMCANEragE Eut; Deploy any contracts needed,
mint balances, etc...
function setUp() public { ,‘:::::::::::::’—~#————\\ J
: cut = new SumContract(); //’//’///, ~
From the state post setUp,
* .
function testSumProperM(int N)| public { vzl .eaCh = Elistiodhv I
_ ] random inputs for the arguments.
vm.assume(N >= 0@); // vm.assume(N < 10);

)

int r = cut.sum(N);
assertEq(r, N x (N + 1) / 2);

o /

Foundry tools generate random inputs for parameters and run the resulting tests.

KFoundry executes the parametric tests symbolically, using the K EVM semantics.
Parametric tests become formal specifications, and KFoundry formally verifies them!

Familiar Ul. K hidden under the hood! E



Formal Verification with Parametric Tests

Hoare Triples — foundation of formal verification: ﬁxample (Solidity sum of numbers up to N): \

(forall vars) : (forall N) .
.......... {'bié'}'"éb&'e (post} UERUSTE £ o= sum(N) {z = N* (N41)/2)
They can be expressed as property tests: expressible as property test:
function testProperty(vars) { function testSumProperty(int N) public {
assume pre; vm.assume(N > 0);
code; int r = cut.sum(N);
assertEq(r, N x (N + 1) / 2);

assert post;
} \_

Passing property test symbolically = formal verification of Hoare triple !

Most of formal verification is symbolic property testing! .

/




ERC-X Tool = KFoundry[ERC token specification]

| T
w

About What's being tested Tokens

Check any token's conformance with the
ERC standards, before or after deployment
on mainnet.

For ERC20, we check properties of state
variables, behaviors of transfers and
approvals, contract balance, expected event
emissions, and usage of the zero address.

ERCx requires your contract to be deployed. Provide its address as shown on etherscan.io

0x... SUBMIT

Com p|ete|y AUtomatiC! Submit your token, too. See how you stack up!


https://research.runtimeverification.com/PL/
https://ercx.runtimeverification.com

RV-Match = K[C] Funded by: @

BOLEING TOYOTA

Used for Verification of Solana Validator O

JUMP CRYPTO

typedef unsigned short ushort;

static inline ushort fd_ushort_rotate_right(ushort x, int n) {
n &= 15;
return (ushort)((x > n) | (x << (16 - n)));

¥

int main(int argc, char **argv) {
ushort i = fd_ushort_rotate_right(60164, 0);

return 9; . .
} firedancer snippet
$ gcc fd_ub_example.c -o gcc.out
Conventional $ ./gcc.out RV-Match’s kcc tool precisely
compilers do not $ detects and reports error, and
detect problem $ kcc fd_ub_example.c -o kcc.out pOin’[S to ISO C11 standard

$ ./kcc.out
fd_ub_example.c: In function ~fd_ushort_rotate_right':
fd_ub_example.c:6:3: error: undefined behavior: result of signed left shift not representable in result type [-Wno-signed-left
shift-overflow]
Refer to c18 §6.5.7/4 file:///src/.build/dist/1lib/kcc/html/shifts.html
called by fd_ub_example.c:10:14(main)

Most comprehensive C semantics! ISO compliant. 16


https://runtimeverification.com/match/1.0-SNAPSHOT/docs/benchmark/#running-rv-match-on-the-toyota-itc-benchmark
https://runtimeverification.com/match/1.0-SNAPSHOT/docs/benchmark/#running-rv-match-on-the-toyota-itc-benchmark

runtime
verification

Matching Logic
Proof Objects
SNARKed Proof Checker



Matching Logic = Foundation for K, Coq,

Smallest logical foundation known for
languages and formal verification!
Invented in 2019 [published in LICS’19]
[ syntactic constructs, 15 proof rules
Can define any programming language (PL)
Can express any claim about any program

Everything K, Coq, Lean, etc., dois a
provable matching logic theorem I'F @

Thus, K, Coq, Lean, ..., become powerful
methodologies to build ML proofs [ICFP’20]

We prefer K: computation = proof, fast (can
be used as PL), many PLs formalized

Lean, ...

FOL 4
Rules

Frame

Rules \

Fixpoint

Rules \

Technical
Rules

(Propositional 1)
(Propositional 2)
(Propositional 3)
(
(
(

o= (Y — o) \
(=2 @—0) > ((p—9¢) > (p—0))

(P 1) = 1) o

Y =P
Modus Ponens) L
"
3-Quantifier) ely/x] = Jz. ¢
T ‘
3-Generalization) (3': e xz ¢ FV(v)
Propagation | ) C[i] - L

(

(Propagation,,)
(Propagations)
(

Framing)

Cle VY] = Cle] vV C[¥Y]

C[3z. ] — z.C|p] with z ¢ FV(C)
Y

Cly] = ClY]

(Substitution)
(Prefixpoint)

(Knaster-Tarski)

©
plv/X]
pl(rX.9)/X] = pX.p
(rX.0) >y

(Existence)

(Singleton)

=T
=(Chlz A @] A Caz A —yp)) /

18



240 LOC Proof Checker — Smallest Ever!

We use MetaMath

. metamath.org; 20+ implementations

« Defined entire matching logic
« Encode claims and proof objects
« Reduce claim correctness to

mathematical proof checking: T' - ¢

axioms

We re-implemented MetaMath:

« In RiskZero’s Rust fragment

« Then generate recursive STARK

« Collaboration with RiskZero (Tim
Carstens) and Univ. of lllinois
(Andrew Miller + Grigore Rosu)

|

theorem

9
10
11
12
13
14
15
16
17
18
19
20
21

\:_

[published in CAV'21, OOPSLA'23]

$c \imp ( ) #Pattern |- $.

$v phl ph2 ph3 §.
phl-is-pattern $f #Pattern phl $.
ph2-is-pattern $f #Pattern ph2 §.
ph3-is-pattern $f #Pattern ph3 $.
imp-is-pattern

$a #Pattern ( \imp phl ph2 ) $.

axiom-1
$a |- ( \imp phl ( \imp ph2 phl ) ) §.

axiom-2
$a |- ( \imp ( \imp phl ( \imp ph2 ph3 ) )
( \imp ( \imp phl ph2 )
( \imp phl ph3 ) ) ) §.

${
rule-mp.0 $e |- ( \imp phl ph2 ) $.
rule-mp.1 $e |- phl §$.
rule-mp $a |- ph2 §$.
$}
J

Va

Matching logic syntax
and proof system
(240 LOC in total)

23 imp-refl $p |- ( \imp phl phl )
24 $=

40

L J
Y

Claims with proofs
(machine checked)

19



https://us.metamath.org/

More General, Universal, yet Smaller Circuit
(than Language-Specific Solutions)
ZKEVM Vs ZKIK[EVM]] B e
Only &vecution Claims: ¢ fIny Claim

v

Trust me, zkEVM is a

(e |

correct implementation / -
of some (hypothetical) PR RISC-V
EVM formal semantics! —>
ZkEVM \
(complex) LLVM

F—_ Formal semantics of R
iy EVM, ideally on the
= blockchain and vetted Plutus
by some organization. k . /

zkEVM is just one example,
but Cairo, zkVM of RiskZero,
zkLLVM of =nil;, etc., suffer
from the same problem

o
o, SNARK-ed simple
: matching logic proof
checker. Same for all
languages and claims!

20




runtime _
verification

Coming Products
(2023-2024)




2023 Product: K Prover as a Service (KaaS)

Pre-deployment recurrent revenue

-

S

Input to
the K Tool

~
N

Vol Y

2,
K ‘aas

-

(¥

K Tool

KFoundry,
ERCX,
RV-Match,

)

N

(formal verifier,

)

To be invoked 100’s
or 1000’s of times
per user per project.

True
A

22



2023 Product: K Prover as a Service (KaaS)

Pre-deployment recurrent revenue

.y
K ‘aas

(Different
K tools
may
require
different
iInputs)

Example: formal verifier

/ Programming

Language
(EVM, WASM,
Solidity, Vyper, ...)

Code to verify
(EVM, WASM,

Solidity, Plutus,

Properties to verify

L

S

AN

o Hints |UE

J ol W

—
/

L]

-

(formal verifier,

U

K Tool

KFoundry,
ERCX,
RV-Match,

)

N

)

To be invoked 100’s
or 1000’s of times
per user per project.

A
AN

False

23



2023 Product: Invariant Monitoring & Recovery
Post-deployment recurrent revenue

Major outcome of formal verification audits: specifications / invariants
So we got the most difficult component of runtime monitoring ... for free !

Monitoring services alone, without recovery
Inform clients of the health status of their protocol
Inform keepers (arbitrators, liquidators) of opportunities

Monitoring services with recovery
Maintain runtime integrity of protocol
E.g. invariant “loans are 80% collateralized” does not hold without liquidations
6 Be keepers ourselves

24



2024 Product: Proof (of Proof) Certificates

-

\

Input to
the K Tool

~
N

Vol Y

Oy
K aasS

-

(¥

K Tool

KFoundry,
ERCX,
RV-Match,

)

N

(formal verifier,

)

To be invoked 100’s
or 1000’s of times
per user per project.

True
A

25



2024 Product: Proof (of Proof) Certificates

-

S

Input to
the K Tool

~
N

Vol Y

Oy
K aasS

-

(¥

K Tool

KFoundry,
ERCX,
RV-Match,

)

N

(formal verifier,

)

To be invoked 100’s
or 1000’s of times
per user per project.

True ?
P 43 Why should |
0 ‘ trust 500k LOC,
J or ... RV?

26



2024 Product: Proof (of Proof) Certificates

., To be invoked 100’s
/ \ K ‘aas or 1000’s of times
‘ per user per project.

.
: K Tool : ﬁ
AN

Input to
the K Tool > (formal verifier,
KFoundry,
ERCX,
E:> RV-Match,
)
— /

S /




K Advantage: multi-chain, multi-language audits / tools / proofs

RV’s core technology platform, dedicated blockchain teams and automated verification tools allow
us to quickly and efficiently add new chain and language support based on market demand. So far:

/Algorand’

CARDANO

CHISMOS

elricind

(=)

Polkadot.

== SOLANA
&% STARKWARE

B Tezos

C

C++

Cairo
Haskell
Ligo
Michelson
Plutus
Reach
Rust
Solidity / EVM
Teal
WASM

28



runtime _
verification

Grigore Rosu
Founder & CEO, RV

Professor of Computer Science, UIUC
grigore.rosu@runtimeverification.com
217-649-8738

runtimeverification.com



http://www.runtimeverification.com/team
http://runtimeverification.com/

