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This talk is mainly based on excerpts from

the book:

Cryptography, an introduction

by Nigel Smart



The Prover Peggy knows a secret.

The Verifier Victor must be convinced that

Peggy really knows the secret, but without

learning anything about it.

They change some public information.

The protocol has to run relatively fast.



Completeness: If Peggy really knows the

thing to be proved, then Victor should ac-

cept her proof with probability 1.

Soundness: If Peggy does not know the

thing to be proved, then Victor should only

have a small probability of actually accepting

the proof.



Protocols in Graphs



Graph Isomorphism

φ : G0 → G1

permutation of vertexes, so

(a, b) ∈ E0 ←→ (φ(a), φ(b)) ∈ E1



Peggy

Chooses i ∈ {0,1} and σ ∈ S(Gi).

Produces the commitment H = σ(Gi).

She knows:

φ : G0 → G1

σ : Gi → H

ψ : G1−i → H



•G1 •1 •2 •3

•4 •5

•G2 •4 •5

•1 •2 •3

•H •3 •5

•2 •1 •4



Victor

gives Peggy a challenge: he chooses j ∈
{0,1} and asks for an isomorphism χ be-

tween H and Gj.

Peggy

If she knows φ, she can give a fast and cor-

rect response.

If she does not know φ, she can give a fast

and correct response only if i = j, which

happens with probability 1/2.

By repeating the protocol k times, she can

cheat only with probability 1/2k, which is

rapidly decreasing.



Transcript of a Zero-Knowledge Protocol

P : Commitment r

V: Chalenge c

P: Response s

If there is a simulator S′(c, s) such that

r = S′(c, s)

the protocol is Zero Knowledge, because we

do not need the secret to find out the com-

mitment.



3-Coloring

CZK = class of all decision problems which

can be verified to be true using a computa-

tional zero-knowledge proof.

Theorem 1 The problem of 3-colourability

of a graph lies in CZK, assuming a compu-

tationally hiding commitment scheme exists.

Theorem 2 If one-way functions exist then

CZK = IP , and hence CZK = PSPACE.

IP = interactive proof systems



Commitments

Bob: r = R(scissors, k)

Alice: paper

Bob: I said scissors, the proof is k.

Alice computes R(scissors, k) = r.

Alice: You won!

As the preimages of R are hard to compute,

Alice has no time to find out that Bob ac-

tually encrypted scissors. Also, If Alice says

rock, Bob has no time to find a k′ such that:

R(scissors, k) = R(paper, k′).



Proof of Theorem 1

Consider a graph G = (V,E) in which the

prover knows a colouring ψ of G, i.e. a map

ψ : V → {1,2,3} such that ψ(v1) 6= ψ(v2)

if (v1, v2) ∈ E. The prover first selects a

commitment scheme R(x; k) and a random

permutation π of the set {1,2,3}. The func-

tion π(ψ(v)) defines another 3-colouring of

the graph. Now the prover commits to this

second 3-colouring by sending to the verifier

the commitments

ci = R(π(ψ(vi)); ki)

for all vi ∈ V . The verifier then selects a

random edge (vi, vj) ∈ E and sends this to

the prover. The prover now decommits to

the values of π(ψ(vi)) and π(ψ(vj)), and the

verifier checks that π(ψ(vi)) 6= π(ψ(vj)). 2



Proof

Completeness: The above protocol is com-

plete since any valid prover will get the ver-

ifier to accept with probability one.

Soundness: If we have a cheating prover

then at least one edge is invalid, and with

probability at least 1/|E| the verifier will se-

lect an invalid edge. Thus with probability

at most 1− 1/|E| a cheating prover will get

a verifier to accept. By repeating the above

proof many times one can reduce this prob-

ability to as low a value as we require.

Zero-Knowledge: Assuming the commit-

ment scheme is computationally hiding, the

obvious simulation and the real protocol will

be computationally indistinguishable.



Manuel Blum, 1986

S logical proof system (Russel - Whitehead),

φ theorem provable in S, L bound of the

length of the proof π

Theorem 3 It is possible to efficiently trans-

form π into a zero-knowledge proof of φ. P

persuades V that with high probability,

1. the theorem φ has a proof π in S of

length < L, and

2. P knows π.



Protocols in Cyclic Groups



Discrete Logarithm difficult to compute

in cyclic groups

Not really.

〈g〉 = (Zn,+,0)↔

↔ gcd(g, n) = 1↔ g ∈ (Z×n , ·,1)

- Compute g−1 mod n.

- logg x = xg−1 mod n.



Instead

- Take a prime q.

- Find a prime p = sq + 1.

- Find element x ∈ Fp such that

g = xs 6= 1

- 〈g〉 ≤ F×p is a cyclic group of order q. Com-

putations are done modulo p and the dis-

crete logarithm is hard to compute.



Schnorr’s Identification Protocol

Peggy’s secret is now the discrete logarithm

x of y with respect to g in some finite abelian

group G of prime order q.

P→V: r = gk for a random k,

V→P: e,

P→V: s = (k + xe) mod q,

V: r = gsy−e.

Probability of successful cheating = 1/q.



No Commitment Used Twice!

(r, e, s) and (r, e′, s′)

r = gsy−e = gs
′
y−e

′

s+ x(−e) = s′+ x(−e′) mod q

x = s′−s
e′−e mod q



Abstractisation

R(x, k) computes the commitmemt r of P ,

k random nonce.

c is the challenge of V .

S(c, x, k) computes the response s of P .

V (r, c, s) the verification algorithm of V .

S′(c, s) simulator’s algorithm which creates

a value of a commitment r which will verify

the transcript (r, c, s). [Schnorr: r = csyc].



Chaum–Pedersen Protocol

Peggy wishes to prove she knows two dis-

crete logarithms

y1 = gx1 and y2 = hx2

such that x1 = x2, i.e. we wish to present

both a proof of knowledge of the discrete

logarithms, but also a proof of equality of

the hidden discrete logarithms.

x1 = x2 = x

g, h generate groups of prime order q



R(x, k) : (r1, r2) = (gk, hk)

S(c, x, k) : s = k − c · x mod q

V ((r1, r2), c, s) : r1 = gs · y1
c ∧ r2 = hs · y2

c

S′(c, s) : (r1, r2) = (gs · y1
c, hs · y2

c)



Proving Knowledge of Commitments

Often one commits to a value using a com-

mitment scheme, but the receiver is not will-

ing to proceed unless one proves one knows

the value committed to.

For the commitment scheme

B(x) = gx

Schnorr’s protocol does this.

For Pedersen’s Commitment

Ba(x) = hxga

we need something different.

Prove knowledge of x1 and x2 such that

y = g1
x1 · g2

x2

where g1 and g2 are elements in a group of

prime order q.



R(x, k) : (r1, r2) = (g1
k1, g2

k2)

S(c, {x1, x2}, {k1, k2}) :

(s1, s2) = (k1 + c · x1, k2 + c · x2) mod q

V ((r1, r2), c, (s1, s2)) :

g1
s1 · g2

s2 = yc · r1 · r2

S′(c, (s1, s2)) : (r1, r2) where r1 is chosen

at random and

r2 =
g1
s1 · g2

s2

yc · r1



Disjunctive Zero-Knowledge Proofs

We wish to show we know either a secret

x or a secret y, without revealing which of

the two secrets we know. Protocol due to

Cramer, Damg̊ard and Schoenmakers.

For proving knowledge of x:

R1(x, k1), S1(c1, x, k1), V1(r1, c1, s1), S′1(c1, s1)

For proving knowledge of y:

R2(y, k2), S2(c2, y, k2), V2(r2, c2, s2), S′2(c2, s2)



Suppose that we know x but not y. We

choose c2 and s2 from their correct domains.

R(x, k1) = (r1, r2) = (R1(x, k1), S′2(c2, s2))

V → c

S(c, x, k1) = (c1, c2, s1, s2) =

= (c⊕ c2, c2, S1(c⊕ c2, x, k1), s2)

V ((r1, r2), c, (c1, c2, s1, s2)) :

c = c1 ⊕ c2 ∧ V1(r1, c1, s1) ∧ V2(r2, c2, s2)

S′(c, (c1, c2, s1, s2)) = (r1, r2) =

= (S′1(c1, s1), S′2(c2, s2))



Disjunctive Schnorr Protocol

We prove knowledge of either x1 or x2 such

that

y1 = gx1 ∧ y2 = gx2

where g ∈ G of prime order q.

We know xi but not xj.

We randomly select cj, ki ∈ F×q and sj ∈ G,

and the commitment is

R(xi, ki) = (r1, r2)

where ri = gki and rj = gsj · yj−cj .

Let c ∈ F×q be the challenge of V .



P computes:

ci = c− cj mod q

si = ki + ci · xi mod q

The response is: (c1, c2, s1, s2)

The verifier checks the proof:

c = c1+c2 ∧ r1 = gs1 ·y1
−c1 ∧ r2 = gs2 ·y2

−c2



How to prove a binary choice

The prover makes a binary choice v ∈ {−1,1}
and wants to convince the verifier that the

choice does respect the condition, without

revealing it. This works over the Pedersen

Commitment B = gαhv. Let G be a group

of prime order q, and two elements g, h ∈ G.

Cramer, Franklin, Schoenmakers, Yung for

a complicated system of electronic vote.



Commitment

v = 1

P chooses randomly α, r1, d1, w2 ∈ Fq.

B = gαh,

a1 = gr1(Bh)−d1,

a2 = gw2.

v = −1

P chooses randomly α, r2, d2, w1 ∈ Fq.

B = gα/h,

a1 = gw1,

a2 = gr2(B/h)−d2.

(B, a1, a2)



Challenge and Response

V makes a challenge c ∈ Fq.

P computes a response.

v = 1

d2 = c− d1,

r2 = w2 + αd2.

v = −1

d1 = c− d2,

r1 = w1 + αd1.

(d1, d2, r1, r2)



Verification

d1 + d2 = c,

gr1 = a1(Bh)d1,

gr2 = a2(B/h)d2.



Exercise

Imagine a protocol in which I prove you that

I know the content of this presentation, but

without revealing this content to you.


