
Optimising the symbolic 
execution of KEVM

1

Ana Pantilie
Runtime Verification Inc.



2

Preliminaries

● The K Framework: consists of the K language and various tools

○ Symbolic execution engine and formal verifier: the Haskell backend

○ Concrete execution engine: the LLVM backend

● KEVM: the semantics of EVM modeled in K

● Special thanks to:

○ Jost Berthold, Sam Balco (Haskell backend team)

○ Everett Hildenbrandt (CTO)



● Modern K

● First steps towards a modern symbolic backend

● A novel approach to implementing a fast symbolic execution engine

Overview

3



4

Modern K



5

Old K workflow

● Fluency in K is required

● Very large feedback loop

● Symbolic backend is opaque 

to users

● The symbolic backend is too 

slow!



6

Working with modern K

● pyk: a Python package for 

interacting programmatically 

with K

● The symbolic execution API: 

exposes a small set of 

primitives required for 

implementing proof strategies

● Potentially no K knowledge is 

required for end users



7

Modern K projects

● KEVM Foundry (see the previous presentation by Andrei Vacaru)

● Work in progress: modernising KWasm, KMIR

https://github.com/runtimeverification/evm-semantics/blob/master/include/kframework/foundry.md


8

A modern symbolic 
backend (first 

steps)



9

The Haskell backend

● https://github.com/runtimeverification/haskell-backend

● Designed as a matching logic interpreter (the mathematical foundation 

for K) with a built-in all-path reachability proving strategy

● Focus on completeness (to the detriment of performance)

● Over 150k lines of Haskell code

● Used to export two main executables: kore-exec and kore-repl

● Monolithic pipeline-like architecture, uses a text-based interface

● Limited interactivity through kore-repl, bad interoperability with 

kore-exec

https://github.com/runtimeverification/haskell-backend
http://www.matching-logic.org/


10

A symbolic execution API
● Architectural overhaul of the Haskell backend

● A new executable, kore-rpc, which launches a server exposing the 

symbolic execution API over JSON-RPC

● Provides users with immense flexibility allowing for language-specific 

optimisations

● Exposes the three main symbolic execution primitives we have 

identified:

○ Execute

○ Simplify

○ Check-implication

https://github.com/runtimeverification/haskell-backend/blob/master/docs/2022-07-18-JSON-RPC-Server-API.md


11

Fast symbolic 
execution



12

A novel approach
● Challenge: how can we implement a fast symbolic execution engine, 

without losing the generality of the K approach?

● We have a big advantage now: the current symbolic execution backend

● Our philosophy:

○ Conformance testing driven development

○ Extreme programming concepts such as “you aren’t gonna need it”

○ Correctness > simplicity > completeness

https://en.wikipedia.org/wiki/You_aren%27t_gonna_need_it


13

The Haskell backend booster
● Closed-source tool which boosts regular K symbolic execution

● Built incrementally: the engine falls back to the regular symbolic 

backend when it can’t progress

● New focus: the needs of K instead of matching logic

● KEVM is the semantics of choice for the first version

● Risk: overfitting -> counteracted by focusing on maintaining design 

flexibility



14

Studying KEVM execution
● Observations:

○ A large part of the execution does not branch

○ Definedness checking is very expensive

○ We can index rewrite rules based on the main symbol of the <k> 

cell

○ Many rules only need a very simple, free constructor unification 

algorithm

Too optimistic? No problem, we can gather counterexamples and improve 

the implementation



15

Writing fast Haskell
● A lot of effort spent in improving the performance of the open source 

backend:

○ Partnered with Serokell to identify implementation bottlenecks, 

check out the blog post!

● Stick to simple Haskell:

○ much easier to reason about performance

○ do not use abstractions just for the sake of them

● Call into the LLVM backend by C FFI to avoid reimplementing concrete 

simplification => this work led to improving LLVM backend as well

● Profile, profile, profile! Document useful kinds of profiling

https://serokell.io/
https://serokell.io/blog/optimizing-k-framework
https://www.simplehaskell.org/
https://github.com/runtimeverification/haskell-backend/blob/master/docs/profiling.md


16

Conclusion

Writing a fast, language independent symbolic execution engine is an 

open problem and we think that an experimental approach is the most 

practical way forward to productize K.



Questions?

17

https://runtimeverification.com/

@rv_inc

https://discord.com/invite/CurfmXNtbN

contact@runtimeverification.com

https://runtimeverification.com/

