
K IDE 

1

Radu Mereuta
Runtime Verification Inc

via Language Server Protocol



● Motivation

● Proposal

● Features

● Workplan

Overview

2



3

Motivation

● Speed up the onboarding process for the curious K developers, and help 

expand the K community

● K has been around for more than a decade and used for:

○ Teaching

○ Defining real world programming languages

● IDE benefits:

○ Beginners - for softening the learning curve

○ Experienced - semantics developers with navigation tools and rapid 

feedback



4

Motivation



5

Motivation

2277 downloads since 2017



6

Proposal
● Add K framework IDE support via Language Server Protocol

● LSP is an open protocol between IDEs and a language sever

● The language server (what we need to implement)

○ Supported by multiple IDEs (VSC, IntelliJ, NeoVim, emacs)

○ It is for IDEs what K is for programming languages



7

Features - syntax highlighting

Visual Studio Code syntax highlighting added by PumpkinDemo and polished by Virgil, Radu. 
Based on regex

https://github.com/PumpkinDemo


8

Features - on text error reporting



9

Features - goto definition

Ctrl+Click - goto definition

Shift+F12 - find occurrences



10

Features - run program step by step

VSC - *not actually implemented



11

Feature list

● Phase 1 - LSP
○ Syntax highlighting (done: PumpkinDemo, Virgil, Radu)

○ Go to definition and find usages (done)
○ Highlight error messages on code - as you type (partially done)
○ Code completion and hints 

● Phase 2 - Debugger
○ Run step by step through a program

■ Split view: highlight rule matched, highlight part of the program
■ Highlight differences in the configuration, hide unchanged parts

● Phase 3 - Prover
○ Still thinking

■ Visualizer for the prover

https://github.com/PumpkinDemo


12

Workplan - Phase 1 (kompile)

● Implement the Language Server skeleton and flush out the architecture 
● Add syntax highlighting 
● Integrate error reporting directly in text (for syntax errors)
● Implement code completion and hints

○ Based on the K AST
● Reparse rules as you type
● Code folding
● Navigation

○ Goto definition and find occurrences
○ Goto implementation



13

Workplan - Phase 2 (krun)

● Visual Debugger
○ With the Debug Adapter Protocol
○ Integrate with GDB - because it’s simple.
○ Pyk library
○ Split view - highlight program location and rule being applied
○ Custom view for the configuration

■ Hide unchanged parts and highlight differences (diff)
■ Remember which cells I folded last time (asked by Raoul and Andrei)
■ Modify the configuration and continue?



14

Workplan - Phase 3 (kprove)

● Visual Prover
○ Integrate with pyk (in development)
○ Build a kcfg visualizer
○ Integrate with the configuration custom view

Kcfg view made by Raoul



15

Other ideas

● Language specific IDE
○ Alongside the K semantics we can offer IDE integration based on K

■ Syntax highlighting - easy manual work
■ Debugger - customized view of the K debugger
■ Prover - customized views

● EVM bytecode decompilation and source tracking
■ Extra features

● Web integration
○ VSCode can run in a browser



16

Competition - Certora VSCode

https://marketplace.visualstudio.com/items?itemName=Certora.vscode-certora-prover

~60 downloads in 2 weeks

https://marketplace.visualstudio.com/items?itemName=Certora.vscode-certora-prover


17

Acquisition

https://marketplace.visualstudio.com/items?itemName=RuntimeVerification.k-vscode
https://open-vsx.org/extension/RuntimeVerification/k-vscode

● ~100 downloads in 2 months
● No promotion

https://marketplace.visualstudio.com/items?itemName=RuntimeVerification.k-vscode
https://open-vsx.org/extension/RuntimeVerification/k-vscode


Thanks for the suggestions

18

https://github.com/runtimeverification/k-editor-support

https://github.com/runtimeverification/k-editor-support

