runtime _
verification

K IDE

via Language Server Protocol

Radu Mereuta

Runtime Verification Inc

Overview %?itflircr:‘aetion

Motivation
Proposal
Features

Workplan

Motivation T ion

e Speed up the onboarding process for the curious K developers, and help
expand the K community
e K has been around for more than a decade and used for:
o Teaching
o Defining real world programming languages
e |IDE benefits:
o Beginners - for softening the learning curve
o Experienced - semantics developers with navigation tools and rapid
feedback

Motivation P ion

Thread # k-public X

David Brandt APP 1ov 9th at 11:43
)

4. What are the ecosystem benefits of using K to describe a language, as opposed to rolling ones
own. For example, would doing so lead to having a VS Code code-completion plugin out-of-the-box
for the described language?
1 reply
ie Also sent to the channel
A bruce.collie 12 days ago
__%» We currently generate the following core tools automatically from a K definition of a given language
(plus a few others):
e Parser
e Fast concrete interpreter
e Symbolic execution engine
e Formal deductive verification system / proofs

We're working on implementing a semantic debugger at the moment; the ecosystem benefit of using
K is that you can generate all of these things from the same source definition. We don't currently
support code-completion, but it would hypothetically be possible to do so using K.

Writing a fast interpreter or rolling your own proof engine is hard if you're trying to do it ad-hoc for
your own language! Using K means that you can just focus on the semantics of your language, and
leave the boilerplate up to us.

Motivation

2K)
K language support for VSC
Lucian Cumpata A

Jupyter Ke...

Install

2277 downloads since 2017

runtime
verification

= Extension: K X

K w.is
Lucian Cumpata D 2,277 % % % % % (1)

K language support for VSC

23 /\ This extension is deprecated. Use the extension instead.

DETAILS

K For Visual Studio Code

Proposal

e Add K framework IDE support via Language Server Protocol
e LSPis an open protocol between IDEs and a language sever
e The language server (what we need to implement)
o Supported by multiple IDEs (VSC, Intellid, NeoVim, emacs)

o ltis for IDEs what K is for programming languages

Development Language Server Protocol Language
Tool (JSON-RPC) Server

Notification: textDocument/didOpen; Params: document

User opens document

Notification: textDocument/didChange; Params: {documentURI, changes}

User edits document

Notification: textDocument/publishDiagnostics; Params: Diagnostic(] Server publishes

errors and warnings
Request: textDocument/definition Params: {documentURI, position}

User executes
“Goto definition” Response: textDocument/definition; Result: Location

Notification: textDocument/didClose; Params: documentURI
User closes document

runtime _
verification

Features - syntax highlighting Verfication

SPGM: Pgm

Visual Studio Code syntax highlighting added by PumpkinDemo and polished by Virgil, Radu.
Based on regex 7

https://github.com/PumpkinDemo

Features - on text error reporting venfieation

le TEST
TEST-SYNTAX
INT
conflguratlonn <k> $PGM:Int </k>
Exp ::= affunction(Int)

PROBLEMS 1

= test.k 1
Encountered <LOWER_ID>. Outer Parser |

Was expecting one of: ["rule”, "context”, "configuration”, "claim”, "syntax”, "endmodule", "imports", "import"]

runtime

Features - goto definition verification

TEST
TEST-SYNTAX
INT

SPGM: I /
Exp affunction(Int)

Ctrl+Click - goto definition

Int "+Int" Int [function,
latex({#1}\mathrel{+ {\scriptstyle\it Int

/

affunctio

1052 nt nt" Int [function, total, klabel(+Int), symbol, left,

domains.md rk/k/k-distribution t e/k/include/kframew) 1 - References (31)

INT-SYMBOLIC [symbolic]) [c
INT-COMMON -Int (12 #InE13) [concrete(12, 13), sym
INT-SYMBOLIC-KORE :
N (bitRangelnt(l, IDX, LEN) +int (1
2 %Int absint(I2)) +Int absInk(i2 | H H
Shift+F12 - find occurrences
> 1 +Int countAllOccurrences(s -
+Int 0 I [simplification] Source, findString(Source, ToCount, 0)
-Int © = I [simplification] Source, findString(Source, ToReplace, 0

Source, findString(Source, ToReplace, 0

modInt N => X requires 0@ <=Int X andBool X <Int N [simpl
%SInt N X s 0 <=Int X andBool X <Int N [simpl

substrstring(S,findChar(S, Delimiters, 0
ubstrstring(S,findChar(S, Delimiters, 0

~ testk 1
<<Int 0 => X [simplification] k» 1 => BIFERIRES 9

~~Tnt N lfcimnlifiratinnld

runtime

Features - run program step by step verification

= sum.imp

adu k > k-distribution > teskts » regres

S s SR Lo V/ This program calculates in sum

S o // the sum of numbers from 1 to n
else é => § .
= int n, sum;

n = 100;

while (B) S => if (B) {S while (B) S} else { sum =

int (X,Xs => Xs); </ tate> Rho:Map
equires notBool (X in keys(Rho))
le int .Ids; S == S [structural]

// sum should be 5050 when n is 1

VSC - *not actually implemented

Feature list P ion

e Phase1-LSP
o Syntax highlighting (done: PumpkinDemo, Virgil, Radu)
o Go to definition and find usages (done)
o Highlight error messages on code - as you type (partially done)
o Code completion and hints
e Phase 2 - Debugger
o Run step by step through a program
m Split view: highlight rule matched, highlight part of the program
m Highlight differences in the configuration, hide unchanged parts
e Phase 3 - Prover
o Still thinking
m Visualizer for the prover

11

https://github.com/PumpkinDemo

Workplan - Phase 1 (kompile) Verfication

Implement the Language Server skeleton and flush out the architecture
Add syntax highlighting
Integrate error reporting directly in text (for syntax errors)
Implement code completion and hints
o Based onthe KAST
Reparse rules as you type
Code folding
e Navigation
o Goto definition and find occurrences
o Goto implementation

12

Workplan - Phase 2 (krun) Verfication

e Visual Debugger

©)

O O O O

With the Debug Adapter Protocol

Integrate with GDB - because it's simple.

Pyk library

Split view - highlight program location and rule being applied

Custom view for the configuration
m Hide unchanged parts and highlight differences (diff)
m Remember which cells | folded last time (asked by Raoul and Andrei)
m Modify the configuration and continue?

13

Workplan - Phase 3 (kprove) venfieation

e Visual Prover
o Integrate with pyk (in development)
o Build a kcfg visualizer
o Integrate with the configuration custom view

@ EXPLORER £ ¢3b6e9af7007074bc494657 1a7e 13c53759df2bc43bb4a799870440c1394e¢ o (1]

v EXAMPLES [WSL: UBUNTU-20.04)

foundry

NoMeteredSpec.test_depositTr

VieteredSpec.test_depositTr

> OUTLINE
v CONTROL-FLOW GRAPH

“ BV i Kcfg view made by Raoul

14

Other ideas P ion

e Language specific IDE
o Alongside the K semantics we can offer IDE integration based on K
m Syntax highlighting - easy manual work
m Debugger - customized view of the K debugger
m Prover - customized views
e EVM bytecode decompilation and source tracking
m Extra features
e \Web integration
o VSCode can run in a browser

15

Competition - Certora VSCode Verfication

N Certora IDE
I l Certora | & 962installs |
CERTORA PLUGIN @ : 4 > Check and validate smart contr
v JOB LIST @ 0 E
My First Job 3 & & D)
@ b @ < U More Info
integrityOfDeposit)
Released « 1 2022 A
Last updated 1/25/2023 4:47 A
F er e I
Unique Identifier Certora.vscode-certora-prover

~60 downloads in 2 weeks

https://marketplace.visualstudio.com/items?itemName=Certora.vscode-certora-prover 16

https://marketplace.visualstudio.com/items?itemName=Certora.vscode-certora-prover

Acquisition verfication

e ~100 downloads in 2 months
e No promotion

Acquisition Trend
80 12
60 9

cquisition

-

/ I

21
Feb

Page views

<

M Install from VSCode M Download from Marketplace — Page views

https://marketplace.visualstudio.com/items?itemName=RuntimeVerification.k-vscode 17
https://open-vsx.ora/extension/RuntimeVerification/k-vscode

https://marketplace.visualstudio.com/items?itemName=RuntimeVerification.k-vscode
https://open-vsx.org/extension/RuntimeVerification/k-vscode

runtime _
verification

Thanks for the suggestions

https://github.com/runtimeverification/k-editor-support

https://github.com/runtimeverification/k-editor-support

