


This Presentation

1. Introduction
2. Objectives
3. The Engine: WebAssembly, Wasmer, EI
4. On-chain composability
5. Off-chain composability
6. Specifying contract systems
7. Formal models
8. Conclusions



Introduction



What is MultiversX

- A scalable Layer 1 blockchain protocol (state sharding, PoS)
- An ecosystem of products:

- xFabric
- xPortal
- xWorlds
- many more …



Objectives



A successful SC system needs:

- Execution speed
- Determinism
- Safety of:

- Primitives
- Smart Contracts
- Interactions

- Composability



The Engine: WebAssembly and Wasmer



From high-level language to execution



Understanding WebAssembly

in production –

Example SC as .wat:

– with debug symbols



Understanding WebAssembly

EI 
(imports)

Endpoints 
(exports)



The sandboxed environment

- Environment interface (EI):
- Retrieving arguments and payments
- Pushing results
- Blockchain info
- Interactions with other contracts
- Managed types

- Endpoints:
- init, update, callback
- A list of all exposed contract functions



Managed types

- Maps from handles (think of them as pointers) to data
- The types:

- Big Int
- Managed Buffer
- Managed HashMap
- Elliptic Curves, Big Float, etc.

- Act like a “virtual heap”
- Offer higher-level atomic operations
- Replace the need for an allocator
- Help write very small contracts



Managed 
types

in action



Managed 
types

in action



On-Chain Composability



SC composability in a sharded architecture

- Shards donʼt have direct access to each otherʼs state
- Contract-to-contract calls:

- Synchronous calls, Ethereum style
- Only if the contracts are known to be in the same shard
- Atomic
- The result of the nested call is available in the calling transaction

- Asynchronous calls
- Shard-agnostic (they work identically in the same shard as cross-shard)
- Not atomic, the calling contract must handle rollback explicitly in case of failure
- The answer comes back later as a callback transaction



SC Asynchronous calls explained

User
Contract A,

Tx 1

Contract B,
Tx 2

Contract A,
Tx 1 

callback



ESDT tokens

- Native
- ESDT ownership stored in account trie (both for SC and EOA)
- No need for ERC-20-style allowance
- Fungible/Semi-fungible/Non-fungible
- Multiple tokens can be transferred in the same transaction
- Smart contracts can receive and send ESDT tokens
- Alternative to persistence in storage



External view contracts

Smart contract 
implementation

Main contract

External view 
contract

reads from storage Called on-chain
Called off-chain



Multi-contracts used for versioning?

Smart contract 
implementation

Version 1

Version 2

…

Migration



Off-Chain Composability



Different execution environments

Smart 
contract

Blockchain 
execution

Local 
simulation

Blockchain 
data Local copy



Many ways to run a smart contract

- On-chain
- Locally, with a real VM, but mocked blockchain
- Locally, in a completely simulated environment
- Locally, but plugging the EI to a blockchain API (“off-chain” SC query)



Different execution environments

Smart 
contract

Blockchain 
execution

Fully 
simulated 

environment

EI

.wasm

VM

Mocked 
blockchain

Blockchain 
API



External view contracts

Smart contract 
implementation

Main contract

External view 
contract

Blockchain API call Called on-chain
Called off-chain



So what does it mean to write a smart contract?



Specifying contract systems



How we specify smart contracts

Storage layout

Constructor / 
endpoint



How we specify smart contracts



Auto-generated ABI and its uses

Smart contract library 
(Rust)

TypeScript 
projects

ABI (Json)

Explorer

Auto-generated proxy (Rust)

Interactors 
(Rust)

Tests
(Rust)



- Invariants
- Storage consistency checks
- Migrations

… but we can do better!



Formal models





Different execution environments

Smart 
contract

Blockchain 
execution

Fully 
simulated 

environment

EI

.wasm

VM

Mocked 
blockchain

MultiversX 
K 

executable 
semantics



Multisig specification & proofs



To conclude …



To conclude …

- Specification and execution are independent systems
- A more denotational approach helps with composability & tooling
- Formal models and traditional systems can work together



More information at https://docs.multiversx.com/
Reach out:

andrei.marinica@multiversx.com
https://discord.gg/multiversxbuilders
https://t.me/MultiversXDevelopers

Follow on:
https://twitter.com/MultiversX

Thank you for listening!

https://docs.elrond.com/
mailto:andrei.marinica@elrond.com
https://docs.elrond.com/
mailto:andrei.marinica@elrond.com
https://discord.gg/multiversxbuilders
https://t.me/MultiversXDevelopers
https://twitter.com/MultiversX

