
Algorand
Mădălina Bolboceanu

RV/ILDS Blockchain Workshop
March 22, 2023

What is this talk about?

A protocol (Algorand*) based on Byzantine
Agreement, which promises to solve the Blockchain
Trilemma, and our proof-of-concept implementation of it in
Python.

* proposed by Chen and Micali, 2017
www.algorand.com

Outline

1. Byzantine Agreement (BA)

a. Why BA?

b. What is BA?

c. How to build arbitrary value-BA from binary-BA

2. The BA protocol behind Algorand

a. A very intuitive BA protocol

b. The protocol

3. Towards a practical protocol: Algorand

4. Results

Byzantine Agreement

Why BA?

malicious honest

B1
B1B1

Br-2 Br-1

BA = agreement + consistency [PeaseShostakLamport80]

malicious honestb1

b2

b5

b4 b6

b3
b7

malicious honest

b

b

b

b
b

agreement

malicious honestb1

b

b

b b6

b
b

malicious honest

b

b

b

b
b

consistency

BA = agreement + consistency [PeaseShostakLamport80]

From binary-value BA to arbitrary-value BA

Graded
consensus

binary-value BA arbitrary-value BA

Many solutions: the trivial one, [TurpinCoan84], etc.

[Micali18] proposes a much cleaner solution:

Only this part implemented

The BA protocol behind Algorand

A very intuitive BA protocol [FeldmanMicali, 1997]

b1

b2

b5

b4

b3

b6

b7

c:

1. Send bi to all the players,
including himself.

2. Update bi as follows:

a) If #i(0)≥ 2t+1, then bi= 0
b) Else, if #i(1)≥ 2t+1, then bi= 1
c) Else, bi= c.

n=3t+1 players

Consistency: if the honest players start with the same value, they will end up with that value.​

Agreement: if the honest players are not in agreement, they will be in agreement with probability ½.​

magical coinEvery player i does:

t malicious

2t+1 honest random &

independent bit

A very intuitive BA protocol [FeldmanMicali, 1997]

b1

b2

b5

b4

b3

b6

b7

c:

1. Send bi to all the players,
including himself.

2. Update bi as follows:

▪ If #i(0)≥ 2t+1, then bi= 0
▪ Else, if #i(1)≥ 2t+1, then bi= 1
▪ Else, bi= c.

n=3t+1 players

Consistency: if the honest players start with the same value, they will end up with that value.​

Agreement: if the honest players are not in agreement, they will be in agreement with probability ½.​

Algorand: it suffices a
less magical coin

Every player i does:

t malicious

2t+1 honest random &

independent bit

Algorand's less magical coin

b1

b2

b5

b4

b3

b6

b7

R

Every player i does:

1. Send the value vi= Sigi(R)

2. Compute the player m s.t. H(vm)≤ H(vj) for all j

3. Set ci= lsb (H(vm))

• R: common info
• Sig: digital signature scheme
• H: random oracle

Algorand's less magical coin

b1

b2

b5

b4

b3

b6

b7

R

Every player i does:

1. Send the value vi= Sigi(R)

2. Compute the player m s.t. H(vm)≤ H(vj) for all j

3. Set ci= lsb (H(vm))

• R: common info
• Sig: digital signature scheme
• H: random oracle

In the case of 2/3 honest majority, the ci's are the same with probability 2/3.
The honest players reach agreement with probability≥ 1/3.

c6 c5

c4

c3

c7

c2

c1

But agreement probability is just 1/3, how to increase it?

0 0 1 0 0 0 1 1 1 1...

1 1 1 0 0 0 1 1 1 1...

0 0 1 1 0 0 1 1 1 1...

0 1 0 0 1 1 1 1 1 1...

Once they are in agreement, they will forever be in agreement (because of Consistency).

Even if they are already in agreement, they will continue to repeat the protocol and spend unnecessary steps because
they don't know that they are in agreement.

… repeat the protocol with inputs(s) = outputs(s-1) for many steps s.

After k steps:
Pr[agreement] ≥ 1 – (2/3)k

How to fix this: the actual protocol [Micali2018]

1.1 Send bi to all the players,
including himself.

1.2 Update bi:

▪ If #i(0)≥ 2t+1, then bi= 0,
output 0, send 0* and halt
▪ Else, if #i(1)≥ 2t+1, then bi= 1
▪ Else, bi= 0

2.1 Send bi to all the players,
including himself.

2.2 Update bi:

▪ If #i(1)≥ 2t+1, then bi= 1,
output 1, send 1* and halt
▪ Else, if #i(0)≥ 2t+1, then bi= 0
▪ Else, bi= 1

3.1 Send bi and Sigi(R, iteration)
to all the players, including
himself.

3.2 Compute its ci and update bi:

▪ If #i(0)≥ 2t+1, then bi= 0
▪ Else, if #i(1)≥ 2t+1, then bi= 1
▪ Else, bi= ci, increase iteration

by 1 and return to step 1

step 1: Coin-Fixed-to-0 step step 2: Coin-Fixed-to-1 step step 3: Coin-Genuinely-Flipped step

It is adapted in Algorand with minor technical changes.

n=3t+1 players

t malicious

2t+1 honest

Every player i does:

Key aspects of the protocol

A. If no halting and no agreement happen
until Step 3, the honest players will be in
agreement at the end of Step 3
with probability ≥1/3.

B. If, at some step, agreement holds on some
bit b, then it continues to hold on b.

C. If, at some step, an honest player i halts,
then agreement will hold at the end of the
step. Agreement reached for many iterations.

Every player halts.

Consistency

Agreement

Towards a practical BA protocol: Algorand

Moving to the real world

The communication increases too much.

Scalability: only a small set of players -a committee- runs the protocol.

Decentralization: each player has the same probability to be
selected in the committee.

Security: an adversary does not know who the
committee is until its reveal + the committee
changes every round and step.

Algorand: consensus by committee solves the Blockchain trilemma:

a. Who can propose a new block?

b. Who actually proposes the block?

c. Who can validate the proposed block?

d. How many can validate the proposed block?

In the next slides...

Only this part
implemented.

B1
B1B1

Br-2 Br-1

a. Who can propose the r-th block?

• Anyone can check if player i is a potential leader when he reveals his signature.

• An adversary cannot predict the potential leaders.

• Any player has the same probability to become potential leader.

• p1 is chosen s.t at least one potential leader will be honest.

• Sig: digital signature scheme
• H: random oracle

Any player i s.t. H(Signi(Br-1|r|0)) ≤ p1 . (potential leader)

malicious
potential leader

honest
potential leader

b. Who actually proposes the r-th block?

The player whose H(Signi(Br-1|r|0)) is minimum. (leader)

leader

c. Who can validate the r-th block?

• Any player has the same probability (~p) to become verifier.

• An adversary cannot predict the verifiers.

Any player i s.t. H(Signi(Br-1|r|1)) ≤ p . (verifier)

malicious
verifier

honest
verifier

Different steps of BA , different verifiers

• Only the verifiers play BA.

• The verifiers change at each step and
their number varies.

• Any nonverifier has a copy of the BA
messages, so he knows how to play further,
if selected.

Different steps of BA , different verifiers

• Only the verifiers play BA.

• The verifiers change at each step and
their number varies.

Issues:

a) BA requires 2/3 honest majority
at each step.

b) Only one block should be chosen
per round.

d. How many can validate the r-th proposed block?

Given

• N = # players

• h = ratio of honest players, in [2/3,1]

• F = failure probability, small value in (0,1)

Find

• n = expected # verifiers
s.t. with probability at least 1- F,

a) BA requires 2/3 honest majority
at each step.

b) Only one block should be chosen
per round.

p = n/N = probability of verifier

Results

of our PoC Python implementation based on ideas from Algorand's whitepaper.

Sets of parameters

#players (N) Ratio of honest
players (h)

Fail probability (F) Expected
#verifiers (n)

Prob. of verifier p= n/N

1000 0.8 10-12 543 0.543

1000 0.8 10-9 474 0.474

1500 0.8 10-12 681 0.454

1500 0.8 10-9 574 0.382

2000 0.8 10-12 779 0.389

2000 0.8 10-9 643 0.321

F n

h vs n for N = 1000 and F = 10-12

h 1 n

Ratio of honest
players (h)

Expected #
verifiers (n)

0.68 982

0.7 941

0.72 880

0.74 803

0.76 717

0.78 628

0.8 543

0.82 464

0.84 392

0.86 329

0.88 274

0.9 226

Results

#players (N) Expected #verifiers (n) Time per
round (avg)

Comm. per
round (avg)

100 82 7.76sec 0.05MB

150 119 23sec 0.17MB

200 155 58sec 0.38MB

250 190 161sec 0.64MB

500 337 2096sec 3.19MB

rounds = 10
steps = 9

h = 0.8 (ratio of honest players)
F = 10-12 (fail probability)

Our crypto team at Bitdefender

Mădălina Bolboceanu Radu Țițiu Miruna Roșca

Andrei Pantea Dacian Stroia

Thank you.

Appendix

Graded Consensus = graded agreement + consistency [FeldmanMicali97]
(*,0)

(*,0)

(b,1)(b,1)

(b,1)

(b,2)(b,1)

(b,2)
(b,1)

(b,2)

graded
agreement

b1

b5

b4

b3

b6

b7

b2

OR

Graded Consensus = graded agreement + consistency [FeldmanMicali97]

(b,2)(b,2)

(b,2)
(b,2)

(b,2)

consistency

b1

b

b4

b

b

b

b

[Micali2018] in Algorand

1.1 Check if he can get Br from
messages of previous steps.
1.2 If not, update bi:
▪ If #i(0)≥ 2n/3+1, then bi= 0,
output 0, gets Br and send CERT
▪ Else, if #i(b)≥ 2/3*(msg

received)+1, then bi= b
▪ Else, bi= 0
1.3 Send bi to all the players,
including himself.

2.1 Check if he can get Br from
messages of previous steps.
2.2 If not, update bi:
▪ If #i(1) ≥2n/3+1, then bi = 1,

output 1, gets Br and send CERT
▪ Else, if #i(b)≥ 2/3*(msg

received)+1, then bi= b
▪ Else, bi= 1
2.3 Send bi to all the players,
including himself.

3.1 Check if he can get Br from
messages of previous steps.
3.2 If not, update bi:
▪ If #i(b)≥ 2/3*(msg received)+1,

then bi= b
▪ Else, bi= lsb(minj H(Sigj(Br-1|r|s),

return to step 1
3.3 Send bi to all the
players, including himself.

step 1 step 2 step 3

n = expected # of verifiers Br = the r-th block CERT = the set of 2n/3+1 identical messages used
in obtaining Br.

• step 0: verifiers send BA inputs
steps = multiple of 3

• step s≥1: every verifier i does:

[Micali2018] in Algorand

1.1 Check if he can get Br from
messages of previous steps.
1.2 If not, update bi:
▪ If #i(0)≥ 2n/3+1, then bi= 0,
output 0, gets Br and send CERT
▪ Else, if #i(b)≥ 2/3*(msg

received)+1, then bi= b
▪ Else, bi= 0
1.3 Send bi to all the players,
including himself.

2.1 Check if he can get Br from
messages of previous steps.
2.2 If not, update bi:
▪ If #i(1) ≥2n/3+1, then bi = 1,

output 1, gets Br and send CERT
▪ Else, if #i(b)≥ 2/3*(msg

received)+1, then bi= b
▪ Else, bi= 1
2.3 Send bi to all the players,
including himself.

3.1 Check if he can get Br from
messages of previous steps.
3.2 If not, update bi:
▪ If #i(b)≥ 2/3*(msg received)+1,

then bi= b
▪ Else, bi= lsb(minj H(Sigj(Br-1|r|s),

return to step 1
3.3 Send bi to all the
players, including himself.

step 1 step 2 step 3

n = expected # of verifiers Br = the r-th block CERT = the set of 2n/3+1 identical messages used
in obtaining Br.

• step 0: verifiers send BA inputs
steps = multiple of 3

• step s≥1: every verifier i does:

• Last step (Step 2-like): Every verifier i checks if he can get Br from messages of previous steps.
If not, i outputs 1, gets Br and sends CERT = {1}.

[Micali2018] in Algorand

1.1 Check if he can get Br from
messages of previous steps.
1.2 If not, update bi:
▪ If #i(0)≥ 2n/3+1, then bi= 0,
output 0, gets Br and send CERT
▪ Else, if #i(b)≥ 2/3*(msg

received)+1, then bi= b
▪ Else, bi= 0
1.3 Send bi to all the players,
including himself.

2.1 Check if he can get Br from
messages of previous steps.
2.2 If not, update bi:
▪ If #i(1) ≥2n/3+1, then bi = 1,

output 1, gets Br and send CERT
▪ Else, if #i(b)≥ 2/3*(msg

received)+1, then bi= b
▪ Else, bi= 1
2.3 Send bi to all the players,
including himself.

3.1 Check if he can get Br from
messages of previous steps.
3.2 If not, update bi:
▪ If #i(b)≥ 2/3*(msg received)+1,

then bi= b
▪ Else, bi= lsb(minj H(Sigj(Br-1|r|s),

return to step 1
3.3 Send bi to all the
players, including himself.

step 1 step 2 step 3

n = expected # of verifiers Br = the r-th block CERT = the set of 2n/3+1 identical messages used
in obtaining Br.

• step 0: verifiers send BA inputs
steps = multiple of 3

• step s≥1: every verifier i does:

• Last step (Step 2-like): Every verifier i checks if he can get Br from messages of previous steps.
If not, i outputs 1, gets Br and sends CERT = {1}.

• Nonverifiers can check if they can get Br, too. If not, they count 2n/3+1 bits of 1 from Last step and get Br.

	Diapozitivul 1: Algorand
	Diapozitivul 2: What is this talk about?
	Diapozitivul 3: Outline
	Diapozitivul 4: Byzantine Agreement
	Diapozitivul 5: Why BA?
	Diapozitivul 6: BA = agreement + consistency [PeaseShostakLamport80]
	Diapozitivul 7: BA = agreement + consistency [PeaseShostakLamport80]
	Diapozitivul 8: From binary-value BA to arbitrary-value BA
	Diapozitivul 9: The BA protocol behind Algorand
	Diapozitivul 10: A very intuitive BA protocol [FeldmanMicali, 1997]
	Diapozitivul 11: A very intuitive BA protocol [FeldmanMicali, 1997]
	Diapozitivul 12: Algorand's less magical coin
	Diapozitivul 13: Algorand's less magical coin
	Diapozitivul 14: But agreement probability is just 1/3, how to increase it?
	Diapozitivul 15: How to fix this: the actual protocol [Micali2018]
	Diapozitivul 16
	Diapozitivul 17: Towards a practical BA protocol: Algorand
	Diapozitivul 18
	Diapozitivul 19
	Diapozitivul 20
	Diapozitivul 21
	Diapozitivul 22
	Diapozitivul 23
	Diapozitivul 24
	Diapozitivul 25
	Diapozitivul 26
	Diapozitivul 27: Results
	Diapozitivul 28: Sets of parameters
	Diapozitivul 29: h vs n for N = 1000 and F = 10-12
	Diapozitivul 30: Results
	Diapozitivul 31: Our crypto team at Bitdefender
	Diapozitivul 32: Thank you.
	Diapozitivul 33: Appendix
	Diapozitivul 34
	Diapozitivul 35
	Diapozitivul 36: [Micali2018] in Algorand
	Diapozitivul 37: [Micali2018] in Algorand
	Diapozitivul 38: [Micali2018] in Algorand

